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S1 Equivalence between the Perron vector and the First Left

Eigenvector

The Laplacian matrix L of a connected graph always has one zero eigenvalue. This eigenvalue can be
linked to the spectral radius of a positive matrix obtained by adding a constant value to the diagonal
entries of −L. This provides an extension of the Perron-Frobenius theorem to −L, where the spectral
radius of the original formulation is replaced by the zero eigenvalue. Lemma S1 addresses this.

Lemma S1. Let L be the Laplacian matrix of a connected graph. Then there exists a left eigenvector v

corresponding to the zero eigenvalue such that every element of v is non-negative.

Proof. Consider the matrix M = kI − L, where I is the identity matrix and k ∈ R. Then the eigenvalues
of M are equal to the eigenvalues of −L plus k, and the eigenvectors of M are equal to those of L. By
the Gershgorin theorem and the construction of L, all eigenvalues of L must lie inside discs centred on
the positive real axis and passing through the origin. Furthermore, L has a zero eigenvalue (with right
eigenvector 1). Therefore, if k is taken to be larger than twice the largest diagonal element of L, all
eigenvalues of M will lie in the right half-plane, and the spectral radius of M will correspond to the
zero eigenvalue of L. But under these conditions, every element of M is non-negative, and so by the
Perron-Frobenius theorem, the desired left eigenvector v exists.

S2 Hurwitz system matrix - Theorem S1

Through the first left eigenvector the most influential nodes can be identified and ranked. If an entry i
of the FLE is larger than the entry j, this means that node i has more influence on the swarm dynamics
than node j. It then suggests awarding the nodes corresponding to higher entries of the FLE more ability
to purse a signal. By doing so, no pursuing capabilities are given to those nodes that are not observed
by any other nodes, and hence cannot contribute to the system’s convergence towards the goal. This is
shown through Theorem S1

Theorem S1. Let L ∈ R
N×N be the Laplacian matrix of a connected graph as defined in Eq. (8) and let

v be the FLE. The FLE is the left eigenvector of L corresponding to the zero eigenvalue, i.e., vT L = 0.
Let the matrix D ∈ R

N×N be a diagonal matrix whose entries are the elements of the nonnegative vector
d, i.e., D = diag{d}. Then −L∗ = −(L + D) is Hurwitz if and only if the scalar product 〈d, v〉 6= 0. In
particular, if the matrix C ∈ R

N×N is defined as C = diag{v}, then −L̃ = −L − C is Hurwitz.

In order to prove Theorem S1, the following Lemmas are needed.
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Lemma S2. Let L be the Laplacian matrix of a connected digraph and let v be its first left eigenvector
corresponding to the zero eigenvalue. Then v has a zero component vi if and only if node i has only
outgoing edges or for each edge j − i entering node i with nonzero out-degree, vj = 0 holds.

The lemma implies that all nodes i that correspond to vi = 0 are not globally reachable.

Proof. Consider the component i of the vector vTL

[vT L]i = viLii +
∑

j 6=i

vjLji = 0. (S1)

By hypothesis the j = i term, that was taken out of the sum, is zero. From the Perron-Frobenius theorem,
all elements of v are nonnegative (see Lemma S1), while the off-diagonal elements Lji(j 6= i) are all non-
positive. Hence for the sum in Eq. (S1) to be zero, it must be that vj = 0 for each j corresponding to an
incoming edge j − i. Considering the same equation the reversed implication is evident.

The lemma also implies that if a node is globally reachable, it must have vi 6= 0. Indeed, looking at
Eq. (S1) a node globally reachable must have at least one incoming edge Lji corresponding to a vj 6= 0.
Hence the equation must be satisfied for some nonzero, and therefore positive, value of viLii. The only
other possible case arises in a connected graph with a single globally reachable node. Calling this node
i, it will be that Lii = 0 as the node will have zero outdegree. As i is the only globally reachable node,
vj = 0, ∀j 6= i. However, in this case vi must be nonzero, as otherwise v would equal 0, which is not
allowed as an eigenvector.

Lemma S3. Let L be the Laplacian matrix of a connected digraph and let v be its first left eigenvector
corresponding to the zero eigenvalue. v has a zero component vi = 0 if and only if node i is not globally
reachable.

Before proving the lemma, it is the case to stress that the graph is required to be just connected and
not necessarily strongly connected. In a connected graph there is at least one globally reachable node.
Conversely, in a strongly connected graph, all nodes are globally reachable, that is, there is an oriented
path connecting any pair of nodes. Moreover, the Laplacian matrix of a strongly connected graph is
irreducible.

Proof. The first implication is a consequence of Lemma S2. More precisely, if vi = 0 Eq. (S1) can be
satisfied either for Lji = 0 for all j 6= i or for vj = 0 for Lji 6= 0. In the first case the node would not be
reachable from any other node. In the second case, Lemma S2 can be recursively applied to each such
node j and (eventually) every node that can reach node i through some path. This implies that if node i
is globally reachable, then we must have v = 0. However this is a contradiction. Hence, for vi = 0, node
i cannot be globally reachable.

For the reverse implication, in order to have non globally reachable nodes, by definition the graph must
not be strongly connected. The Laplacian matrix L in this case is reducible and, through permutations,
it is possible to arrange it in the form

L =

[

L0 B
0 LGR

]

(S2)

where L0 ∈ R
l×l and LGR ∈ R

m×m with N = l + m are square matrices whose rows refer respectively to
non-globally reachable and globally reachable nodes. [0] is a matrix of consistent dimensions whose entries
are all zeros and [B] is a matrix of consistent dimensions with no relevant characteristics. Note that L0

is not a Laplacian, as the row-sums of L must be zero and include also the entries of B. Conversely,
LGR still is a Laplacian, since its row sums equal zero (and it contains non-negative diagonal entries and
non-positive off-diagonal entries). The eigenvalues of L are the union of the spectra of L0 and LGR, and
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because the graph is connected L has one single eigenvalue equal to zero that hence must belong to the
spectrum of LGR as this is a Laplacian itself. Consider a partition of the first left eigenvector accordingly,
that is the first l and the second m entries as

v =
[

vNGR vGR

]T
. (S3)

As vT
NGRL0 = 0 must hold, and zero is not an eigenvalue for L0, this means that vNGR = 0.

Lemma S4. Let L be the Laplacian matrix of a connected digraph and let v be its first left eigenvector
corresponding to the zero eigenvalue. If v has a zero component vi = 0 then the diagonal element of the
Laplacian matrix Lii 6= 0.

Proof. The lemma can be proved by contradiction by noting that if both vi = 0 and Lii = 0 then the
node i would have no outgoing edges and all its incoming edges would start from a non globally reachable
node. Hence the node i would belong to an isolated component and the graph would be disconnected.

It is now possible to prove Theorem S1. First the theorem is proved for the case of the diagonal matrix
D ≡ C = diag{v}, that is, being composed of the FLE. After this, the proof is extended to the more
general case of D = diag{d} with 〈d, v〉 6= 0.

Proof. First suppose L to be reducible and consider its partition as in Eq. (S2). The first l columns of
L correspond to those nodes with index i for which vi = 0. All incoming edges to those nodes must have
their origin in nodes indexed by some j for which vj = 0 too. So all the nonzero entries of the first l
columns must be in the top left partition L0. As the zero eigenvalue is found in LGR, −L0 is Hurwitz. It
follows that the matrix −L̃ = −L − C is Hurwitz too because the zero entries of v leave L0 unchanged
and the positive ones make the matrix −LGR − Cm Hurwitz, where Cm is the diagonal matrix made up
of the last m components of v. This follows as a simple consequence of the Gershgorin disk theorem.
The case of L being irreducible, can be considered as a particular one where l = 0.
Consider now the more general case of D = diag{d} with 〈d, v〉 6= 0. As both d, v are non negative,
for their scalar product to be non zero it must be that di, vi 6= 0 for at least one index i. If this is the
case, considering the matrix L partitioned as in Eq. (S2), some nonzero elements of D would add to the
lower partition LGR making at least one row sum of the resulting matrix positive. Furthermore, again
from the Gershgorin disk theorem, nonzero elements of d added to the top left partition L0 will leave it
Hurwitz. The proof is completed by considering Theorem III in [Tau49], which is reported here for the
sake of completeness with the notation used so far.

Theorem S2. ( [Tau49])
Let L ∈ R

N×N such that Lii > 0 and Lij 6 0 for j 6= i. Assume moreover that Lii >
∑

j 6=i |Lij | and that

L is irreducible. The determinant of L then vanishes if and only if
∑N

j=1
Lij = 0 for i = 1, 2, ..., N .

As the determinant does not vanish, the zero eigenvalue of the Laplacian disappears and the Gershgorin
circle theorem ensures that all the eigenvalues of −L∗ have then negative real part.

S3 Examples of Graphs Illustrating the Characteristics of the

First Left Eigenvector

Example S1. Consider the digraph in Table S1 with its Laplacian matrix and its first left eigenvector.
Lemma S2 can be illustrated through this example.
Nodes 2,3, and 4 are not globally reachable (they cannot be reached from node 1), but still they have both
incoming and outgoing edges. The second, third and fourth entries of the first left eigenvector are then
zeros.
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Table S1. Graph 1 example

❡ ❡

❡ ❡

❄ ✲❅
❅

❅
❅

❅
❅

❅❅■

✲

3 4

2 1

L =









0 0 0 0
−1 2 −1 0
0 0 1 −1

−1 0 0 1









v =















1
0
0
0















Example S2. Consider the line digraph in Table S2 with its Laplacian matrix and its first left
eigenvector. Lemma S4 can be explained through this example.

Table S2. Graph 2 example

❡ ❡

❡ ❡

❄ ✲

✛

3 4

2 1

L =









1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0









v =















0
0
0
1















Consider, in particular, the second entry of the FLE: it is null. According to Lemma S4, this corre-
sponds to a nonzero diagonal entry L22, which is actually verified here. The only way to have L22 = 0
would be dropping the 2-3 edge. Because the only incoming connection to node 2 has origin in a node that
is not globally reachable, the resulting graph would be disconnected.

S4 Further Bounds to the Convergence Speed

Using the triangle inequality, the convergence speed can be bounded. Consider Equation (6), it holds

‖v‖2 ≤ ‖v‖1. (S4)

In the case ‖v‖2 ≥ 1 the smallest eigenvalue in magnitude of the perturbed Laplacian can also be related
to the L1 norm of the first left eigenvector, being bounded by

λ1(−L − C) ≥ −
‖v‖2

1

α
. (S5)

Finally, when the L1 norm of v is unitary, Eq. (S5) reduces to

λ1(−L − C) ≥ −1. (S6)

S5 First Left Eigenvector with Frobenius Matrix Norm

For the particular case of a Frobenius matrix norm for the perturbation, the same arguments used to find
the diagonal matrix that maximizes the spectral radius in [HNT99] can be adopted to find the minimum
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of it. Consider the gradient of the spectral radius in Eq. (10) and consider the eigenprojection of the
generic matrix A as defined in [AC02]. It can be stated that the gradient in Eq. (10) corresponds to the
transpose of the eigenprojection E, that is

E =
uvT

vTu
(S7)

∇ρ(A) = ET =
vuT

vTu
. (S8)

A diagonal perturbation ED composed of the Perron vector attains the minimum of the spectral radius
for the matrix (−L − ED + kI) amongst the diagonal perturbations with fixed Frobenius norm, in the
hypothesis of small magnitude of the perturbation. This is shown through the following lemma.

Lemma S5. Let L be the Laplacian matrix of a directed graph on N nodes. Let u and v be respectively
the right and left Perron vectors associated with the zero eigenvalue. Let k be a positive scalar greater
than the largest eigenvalue in magnitude of L and ED be the diagonal matrix defined as

ED = diag
(u ◦ v

vTu

)

(S9)

where {◦} indicates the product element by element. Then the minimum of the spectral radius of (−L −
∆ + kI) with ∆ belonging to the space of diagonal matrices of unitary Frobenius norm is achieved for
∆ = ED/‖ED‖F .

Proof. Consider the derivative of the spectral radius of the matrix M = −L + kI in the direction of ∆
and ED/‖ED‖F , respectively

ρ′
∆ (M) = lim

t→0

ρ (M − t∆) − ρ (M)

t

= −ET · ∆ = −trace (E∆) (S10)

ρ′
ED/‖ED‖F

(M) = lim
t→0

ρ
(

M − t ED

‖ED‖F

)

− ρ (M)

t

= −ET ·
ED

‖ED‖F
= −‖ED‖F . (S11)

The inner product between matrices is defined as

P · Q = trace
(

P T Q
)

;

which provides a definition for the Frobenius norm as ‖P ‖F =
√

trace (P T P ). For the Cauchy-Schwarz
inequality

trace(E∆) = ET · ∆ ≤ ‖ET ‖F ‖∆‖F = ‖E‖F , (S12)

which implies
ρ′

ED/‖ED‖F
(M) ≤ ρ′

∆ (M) . (S13)

Because of how ED is defined in Eq. (S9) and because of the fact that M has the same eigenvectors as L,
u is always uniform and the gradient of the spectral radius of M depends upon the left eigenvector only.
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S6 Second Order Dynamics, Existence of the Zero Eigenvalue

For positive Cd, Cv and Cw the system matrix in Eq.(16) is not Hurwitz as it keeps the zero eigenvalue,
as proved in Lemma S6.

Lemma S6. Let L be the Laplacian matrix of a connected directed graph on N nodes. Let Cd, Cv and
Cw be diagonal matrices with nonnegative entries and in particular let Cw have nonzero elements along
the diagonal where the first left eigenvector, corresponding to the zero eigenvalue of the Laplacian matrix,
presents nonzero entries. Then 0 is an eigenvalue of the matrix

S =

[

[0] I
−CdL −(CvL + Cw)

]

. (S14)

Proof. The existence of the 0 eigenvalue is proved by proving the determinant to be null. Consider a
generic matrix M partitioned as

M =

[

A B
C D

]

. (S15)

According to the Schur formula, the determinant of the generic matrix M is

det(M) = |M| = |AD − BD−1CD|. (S16)

Likewise, the determinant of matrix S is

det(S) = |S| = |[0] − (CvL + Cw)−1(−CdL)(CvL + Cw)| =
= |(CvL + Cw)−1||CdL||CvL + Cw| = |CdL| = 0.

(S17)

S7 Second Order Dynamics, Conjectured Stability

Proving the existence of the zero eigenvalue in the spectrum of S is not enough to conclude the system
is stable. To achieve this, it should be proved, for instance, that all the eigenvalues of matrix S have
nonpositive real part. This is not the case for all possible values of Cd and Cv as numerical simulations
show. However, for a wide range of values and graphs the system appears stable. The stability of matrix
S is hence here conjectured and supported by some complementary findings and numerical analysis.

Conjecture 1. The second order dynamical system whose state space representation is described by
matrix (S14) is stable for small values of the vector Cd

i for i = 1, 2..., N .

The conjecture is supported by the following statements:

- The trace of the matrix (S14) is negative. This corresponds to the sum and the average of the
eigenvalues being negative.

- If the graph is undirected, the Laplacian would be symmetric and so would the matrices CvL + Cw

and −CdL. The matrix (S14) then would describe a system of interconnected oscillators with a
positive semidefinite stiffness matrix and a positive definite damping matrix. Note that in the
symmetric case, having all the eigenvalues positive (resp. nonnegative) is a sufficient condition to
conclude the matrices are positive definite (resp. semidefinite). In this particular case the stability
does not depend upon the value of Cd.
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- For the case of a 2 node graph, it can be easily verified that the signs of the characteristic polyno-
mial do not change. Then Descartes’ rule of sign can be invoked and, together with the trace being
negative, this indicates all the eigenvalues are nonpositive. The 2 node graph case is detailed in the
following. As for the symmetric case, also this time the stability does not depend upon the value
of Cd.

- In line with the findings in [Sha05], the stability in the case of a generic, directed graph, appears
dependent on the degree of asymmetry of the stiffness matrix. In particular, in [Sha05] it is shown
how, for a symmetric lower-right partition (CvL + Cw for our system) of the system matrix, the
stability of the system can be linked to the amount of asymmetry present in the lower-left partition
(−CdL for our system) compared to its symmetric part and to the lower-right partition. However
here, both the lower partitions of the matrix are non symmetric, and the relative magnitude of
the two differ because of the Cw, Cd and Cv coefficients. As Cw is here determined by the first
left eigenvector of the Laplacian matrix, the value of Cd regulates the stability of the system. As
the value of Cd decreases the matrix partition CvL + Cw becomes more dominant with respect to
−CdL, producing a more stable behaviour, as observed in [Sha05].

Conjecture 1 is furthermore supported by the numerical tests reported in the Results section and com-
plemented by the other cases in Fig. S3 and S4.

The 2-node graph case for the second order system stability

Consider a matrix describing the second order system in state space as in Eq. (S14). In particular
consider the case of a 2 node graph as in Eq. (S18)

S2 =









0 0 1 0
0 0 0 1

−Cd
1 L11 −Cd

1 L12 −Cu
1 − Cv

1 L11 −Cv
1 L12

−Cd
2 L21 −Cd

2 L22 −Cv
2 L21 −Cu

2 − Cv
2 L22









. (S18)

The characteristic polynomial can be developed as

det(S2 − λI) = λ4 + (Cw
1 + Cw

2 + Cv
1 L11 + Cv

2 L22)λ3

+(Cw
1 Cw

2 + Cd
1 L11 + Cd

2 L22 + Cw
2 Cv

1 L11 + Cw
1 Cv

2 L22 + Cv
1 Cv

2 L11L22 − Cv
1 Cv

2 L12L21)λ2

+(Cd
1 Cw

2 L11 + Cd
2 Cw

1 L22 + Cv
1 Cd

2 L11L22 − Cv
1 Cd

2 L12L21 + Cd
2 Cv

1 L11L22 − Cd
2 Cv

1 L12L21)λ

+Cd
1 Cd

2 L11L22 − Cd
1 Cd

2 L12L21. (S19)

The constant term in Eq. (S19) is null as it is the determinant of CdL, that is

Cd
1 Cd

2 L11L22 − Cd
1 Cd

2 L12L21 = |CdL| = 0.

Moreover all the coefficients of the characteristic polynomial are positive. It is sufficient to note that the
entries of Cw, Cv and Cd are non-negative while L11, L22 ≥ 0 and L12, L21 ≤ 0. Thus every term in the
characteristic polynomial is nonnegative, and within each coefficient some term must be positive. For
Descartes’ sign rule all the nonzero roots of the characteristic polynomial have the same sign. As the
trace of matrix S2 is negative, none of the roots of the characteristic polynomial can be positive.
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Figure S1. Largest eigenvalue (considering the sign) of the system matrix as a function of the free
parameter κ for the asymmetric lattice in Fig. 1.a.

S8 Numerical Analysis of the Stability Limits

For the case of a connected and directed graph, the role of the Cd and Cv parameters is here analysed
through numerical means. The asymmetric lattice used in the first order dynamics numerical examples is
here used to show the dependence of the stability on the asymmetry in the system matrix. In accordance
with the condition (14), Cd

i and Cv
i for each node i are defined as

Cd
i = κ(1 − Cw

i ) and Cv
i = (1 − κ)(1 − Cw

i ) (S20)

using the free parameter κ ∈ [0, 1]. The value of the largest nonzero eigenvalue (not just the magnitude
but also the sign is considered) for 1000 values of the free parameter κ are plotted in Fig. S1. At
κ = 0.9075 ± 0.0005 the largest eigenvalue changes sign making the second order system unstable.
The appearance of positive eigenvalues meets the criterion established in [Sha05] where instability is
linked, for a particular class of systems, to the degree of asymmetry of the lower left partition, CdL in
this case. To confirm this, the matrix norms of the partitions are plotted in Fig. S2, where it is shown
how, by increasing the parameter κ, the skew-symmetric part of matrix CdL increases linearly, matching
and surpassing the norm of the CvL + Cw matrix. For a generic matrix M , the matrix norm is defined
as

‖M‖,, max{‖Mv‖} =
√

λmax{M∗M} (S21)
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Figure S2. Norms of the system matrix partitions as a function of the free parameter κ.

for all possible vectors v of unitary norm, where M∗ denotes the conjugate transpose of M .
The findings in [Sha05] are not directly applicable to this case, because they refer to matrices with a
symmetric lower right partition and because they just provide necessary conditions for stability. However,
also here, within the limits of the numerical analysis, an increase in the asymmetry of the lower left
partition with respect to the lower right corresponds to the increase of instability in the system.

S9 Second Order Dynamics, Consensus in a Lattice Network for

κ = 0.5 and κ = 0.8

The value of the parameter κ determines the amount of resources each agent allocates to the agreement
about a common velocity and a common separation with respect to its neighbours. A high value of the
parameter κ destabilises the system. Here the dynamics of the second order system for κ = 0.5 and
κ = 0.8 are shown in Fig. S3 and S4 to complement what was claimed in the main part of this work.
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The figures show how the system becomes less and less stable as κ increases towards unity.

S10 Fastest Convergence with Fixed Trace Diagonal Perturba-

tion

For a Laplacian perturbed by a diagonal perturbation of fixed L1 norm, Eq. 6 indicates the FLE max-
imises the consensus speed. However, it was noted that limiting L1 norm of the perturbation does
not corresponds to requiring a fixed trace diagonal perturbation. The following theorem and lemma,
from [JSOvdD94], provide a useful means to find the perturbation matrix T , in the space of diagonal ma-
trices with fixed trace that maximises the consensus speed of the perturbed Laplacian. In particular the
theorem provides a way to calculate the matrix T with zero trace which returns the lowest spectral radius
possible and the lemma extends the results to all possible traces. Note that when elements of T are all non-
negative, the trace corresponds to the L1 norm of the vector composed by the same nonzero entries of T .
To relate the following theorem and lemma to the results presented here, the following notation is needed:

- µ(A; t) is the minimum of the spectral radius for a generic matrix A subject to a diagonal
perturbation with trace t. In particular for zero trace perturbation, let µ(A) , µ(A; 0).

- Tq indicates a diagonal matrix whose nonzero entries are the elements of vector q.

- The diagonal similarity of a matrix A is defined as A1 = T −1
q ATq where q is a positive vector.

The diagonal similarity of a nonnegative matrix A is nonnegative too and the value of µ(A) is not
affected by the transformation.

Theorem S3. Let A be an N × N essentially nonnegative matrix, and suppose that P is a permutation
matrix such that P T AP is in Frobenius normal form. Let A0 be the direct sum of irreducible matrices that
is obtained from P T AP by replacing all entries in off-diagonal blocks with 0’s, and let B be the line sum
symmetric diagonal similarity of A0. Then µ(A) = µ(A0) = (1/N)1T B1, and µ(A) = min{λmax(A+Tq) :
1T q = 0} is achieved only by q = P [µ(A)1 − B1].

Lemma S7. Let A be an N × N essentially nonnegative matrix and let t be a scalar. Then µ(A; t) =
µ(A) + t/N . Furthermore if the minimum µ(A) is achieved only by the vector q with 1T q = 0, then the
minimum µ(A; t) is achieved only by a vector q + t/N1.

An important consideration is that the calculation of the matrix B from Theorem S3 is not immediate.
It consists in finding the positive diagonal matrix Tq that makes matrix A0 line sum symmetric. This
corresponds to finding the solution of the system of equations

T −1

q Aq − TqAT δ = 0 (S22)

where δ is a vector whose elements are the inverse of the elements of q. This can be solved through
iterative procedures such as the Newton-Raphson method. The above theorem and lemma provide a
useful way to calculate the best diagonal perturbation for fixed trace. Unfortunately the fixed trace
condition produces, in many cases, the effect of “fouling” the less influential nodes to allocate more
influence to the most influential ones. As the arithmetic sum of the diagonal elements must be the same,
some elements (those corresponding to less observed nodes) can be taken negative so as to allow other
elements to achieve larger values, even beyond the total amount available. Assigning negative values
does not match the initial intent of distributing resources in an efficient way as a negative element, that
corresponds to passing a node wrong information about the driving signal, requires a resource allocation
by the node anyway. The L1 norm in this case would exceed the trace, representing the actual maximum
amount of resources assigned overall.
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Figure S3. Consensus in a lattice network, for a second order system for κ = 0.5. (a) Consensus about
x velocity. (b) Consensus about y and z velocity. (c) Standard deviations of the agent relative distances
over time showing consensus about common reciprocal separation. (d) Trajectories in physical space of
the agents from the initial random state to consensus about a common direction and relative distances.
At κ = 0.5 oscillations become more evident.
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Figure S4. Consensus in a lattice network, for a second order system for κ = 0.8. (a) Consensus about
x velocity. (b) Consensus about y and z velocity. (c) Standard deviations of the agent relative distances
over time showing consensus about common reciprocal separation. (d) Trajectories in physical space of
the agents from the initial random state to consensus about a common direction and relative distances.
At κ = 0.8 oscillations are close to being disruptive of the system.
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